Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens.

Identifieur interne : 001605 ( Main/Exploration ); précédent : 001604; suivant : 001606

Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens.

Auteurs : Jing Wang [Suède] ; Nathaniel R. Street [Suède] ; Douglas G. Scofield [Suède] ; P R K. Ingvarsson [Suède]

Source :

RBID : pubmed:26983554

Descripteurs français

English descriptors

Abstract

Despite the global economic and ecological importance of forest trees, the genomic basis of differential adaptation and speciation in tree species is still poorly understood. Populus tremula and Populus tremuloides are two of the most widespread tree species in the Northern Hemisphere. Using whole-genome re-sequencing data of 24 P. tremula and 22 P. tremuloides individuals, we find that the two species diverged ∼2.2-3.1 million years ago, coinciding with the severing of the Bering land bridge and the onset of dramatic climatic oscillations during the Pleistocene. Both species have experienced substantial population expansions following long-term declines after species divergence. We detect widespread and heterogeneous genomic differentiation between species, and in accordance with the expectation of allopatric speciation, coalescent simulations suggest that neutral evolutionary processes can account for most of the observed patterns of genetic differentiation. However, there is an excess of regions exhibiting extreme differentiation relative to those expected under demographic simulations, which is indicative of the action of natural selection. Overall genetic differentiation is negatively associated with recombination rate in both species, providing strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between species. Finally, we identify a number of candidate regions and genes that may have been subject to positive and/or balancing selection during the speciation process.

DOI: 10.1093/molbev/msw051
PubMed: 26983554
PubMed Central: PMC4915356


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens.</title>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå, SE</wicri:regionArea>
<wicri:noRegion>SE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE</wicri:regionArea>
<wicri:noRegion>SE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scofield, Douglas G" sort="Scofield, Douglas G" uniqKey="Scofield D" first="Douglas G" last="Scofield">Douglas G. Scofield</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden par.ingvarsson@umu.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå, SE</wicri:regionArea>
<wicri:noRegion>SE</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26983554</idno>
<idno type="pmid">26983554</idno>
<idno type="doi">10.1093/molbev/msw051</idno>
<idno type="pmc">PMC4915356</idno>
<idno type="wicri:Area/Main/Corpus">001865</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001865</idno>
<idno type="wicri:Area/Main/Curation">001865</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001865</idno>
<idno type="wicri:Area/Main/Exploration">001865</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens.</title>
<author>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå, SE</wicri:regionArea>
<wicri:noRegion>SE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE</wicri:regionArea>
<wicri:noRegion>SE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scofield, Douglas G" sort="Scofield, Douglas G" uniqKey="Scofield D" first="Douglas G" last="Scofield">Douglas G. Scofield</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden par.ingvarsson@umu.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå University, Umeå, SE</wicri:regionArea>
<wicri:noRegion>SE</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology and evolution</title>
<idno type="eISSN">1537-1719</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA, Plant (genetics)</term>
<term>Europe (MeSH)</term>
<term>Gene Flow (MeSH)</term>
<term>Genetic Speciation (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genetics, Population (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Linkage Disequilibrium (MeSH)</term>
<term>North America (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (genetics)</term>
<term>Recombination, Genetic (MeSH)</term>
<term>Selection, Genetic (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Amérique du Nord (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Déséquilibre de liaison (MeSH)</term>
<term>Europe (MeSH)</term>
<term>Flux des gènes (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Génétique des populations (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Recombinaison génétique (MeSH)</term>
<term>Spéciation génétique (MeSH)</term>
<term>Sélection génétique (MeSH)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Europe</term>
<term>Gene Flow</term>
<term>Genetic Speciation</term>
<term>Genetic Variation</term>
<term>Genetics, Population</term>
<term>Genome, Plant</term>
<term>Linkage Disequilibrium</term>
<term>North America</term>
<term>Phylogeny</term>
<term>Recombination, Genetic</term>
<term>Selection, Genetic</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amérique du Nord</term>
<term>Analyse de séquence d'ADN</term>
<term>Déséquilibre de liaison</term>
<term>Europe</term>
<term>Flux des gènes</term>
<term>Génome végétal</term>
<term>Génétique des populations</term>
<term>Phylogenèse</term>
<term>Recombinaison génétique</term>
<term>Spéciation génétique</term>
<term>Sélection génétique</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Despite the global economic and ecological importance of forest trees, the genomic basis of differential adaptation and speciation in tree species is still poorly understood. Populus tremula and Populus tremuloides are two of the most widespread tree species in the Northern Hemisphere. Using whole-genome re-sequencing data of 24 P. tremula and 22 P. tremuloides individuals, we find that the two species diverged ∼2.2-3.1 million years ago, coinciding with the severing of the Bering land bridge and the onset of dramatic climatic oscillations during the Pleistocene. Both species have experienced substantial population expansions following long-term declines after species divergence. We detect widespread and heterogeneous genomic differentiation between species, and in accordance with the expectation of allopatric speciation, coalescent simulations suggest that neutral evolutionary processes can account for most of the observed patterns of genetic differentiation. However, there is an excess of regions exhibiting extreme differentiation relative to those expected under demographic simulations, which is indicative of the action of natural selection. Overall genetic differentiation is negatively associated with recombination rate in both species, providing strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between species. Finally, we identify a number of candidate regions and genes that may have been subject to positive and/or balancing selection during the speciation process.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26983554</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1537-1719</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2016</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology and evolution</Title>
<ISOAbbreviation>Mol Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens.</ArticleTitle>
<Pagination>
<MedlinePgn>1754-67</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/molbev/msw051</ELocationID>
<Abstract>
<AbstractText>Despite the global economic and ecological importance of forest trees, the genomic basis of differential adaptation and speciation in tree species is still poorly understood. Populus tremula and Populus tremuloides are two of the most widespread tree species in the Northern Hemisphere. Using whole-genome re-sequencing data of 24 P. tremula and 22 P. tremuloides individuals, we find that the two species diverged ∼2.2-3.1 million years ago, coinciding with the severing of the Bering land bridge and the onset of dramatic climatic oscillations during the Pleistocene. Both species have experienced substantial population expansions following long-term declines after species divergence. We detect widespread and heterogeneous genomic differentiation between species, and in accordance with the expectation of allopatric speciation, coalescent simulations suggest that neutral evolutionary processes can account for most of the observed patterns of genetic differentiation. However, there is an excess of regions exhibiting extreme differentiation relative to those expected under demographic simulations, which is indicative of the action of natural selection. Overall genetic differentiation is negatively associated with recombination rate in both species, providing strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between species. Finally, we identify a number of candidate regions and genes that may have been subject to positive and/or balancing selection during the speciation process.</AbstractText>
<CopyrightInformation>© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Street</LastName>
<ForeName>Nathaniel R</ForeName>
<Initials>NR</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scofield</LastName>
<ForeName>Douglas G</ForeName>
<Initials>DG</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ingvarsson</LastName>
<ForeName>Pär K</ForeName>
<Initials>PK</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden par.ingvarsson@umu.se.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>03</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Evol</MedlineTA>
<NlmUniqueID>8501455</NlmUniqueID>
<ISSNLinking>0737-4038</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005060" MajorTopicYN="N">Europe</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051456" MajorTopicYN="N">Gene Flow</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049810" MajorTopicYN="N">Genetic Speciation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005828" MajorTopicYN="N">Genetics, Population</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009656" MajorTopicYN="N">North America</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="N">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus tremula</Keyword>
<Keyword MajorTopicYN="Y">Populus tremuloides</Keyword>
<Keyword MajorTopicYN="Y">demographic histories</Keyword>
<Keyword MajorTopicYN="Y">heterogeneous genomic differentiation</Keyword>
<Keyword MajorTopicYN="Y">linked selection</Keyword>
<Keyword MajorTopicYN="Y">recombination</Keyword>
<Keyword MajorTopicYN="Y">whole-genome re-sequencing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26983554</ArticleId>
<ArticleId IdType="pii">msw051</ArticleId>
<ArticleId IdType="doi">10.1093/molbev/msw051</ArticleId>
<ArticleId IdType="pmc">PMC4915356</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2513255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2015 Nov;25(11):1656-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26355005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 13;475(7357):493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21753753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):332-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22201163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014 Nov 25;15:356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25420514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Dec;2(12):e190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):409-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22201170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 May;19(5):711-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19411596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Jul;23(13):3133-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24845075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e37558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22911679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Jun 11;12:231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21663684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Sep;91(9):1398-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Mar;202(3):1185-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26721855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Apr 9;356(6369):519-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1560824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Apr 23;304(5670):581-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Feb;12(2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Oct 16;14:276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25318822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jun 22;405(6789):907-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10879524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Jun;13(6):1341-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2001 Jul;2(7):516-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11433358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22861491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2015 Mar 17;5(5):931-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25787242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2006 Apr;78(4):629-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16532393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Oct;17(10):1483-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 Feb;18(3):375-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Sep;3(9):e285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Mar 26;6(3):e1000886</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20361044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 1;27(15):2156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 29;491(7426):756-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23103876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Jun;14(6):404-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23657479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jul;155(3):1405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10880498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):364-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22201166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2014 Mar;15(3):176-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24535286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 15;30(10):1486-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24458950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Aug;46(8):919-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24952747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 May;43(5):491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Feb 13;11(2):e1004966</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25679225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2009 Dec;103(6):439-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19920849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Aug;24(16):4238-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26175196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Apr;2(4):e64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16683038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Nov;195(3):979-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23979584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:Unit 4.10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Mar;19(5):848-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20456221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Oct;9(10):e1003905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Nov;195(3):693-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24026093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 12;9(8):e103645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25116432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Apr;11(2):135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18329329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Aug 15;26(16):2064-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20591904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23652015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Aug 28;10(8):e1003519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25166595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 3;102 Suppl 1:6573-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 May;15(5):538-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9580982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2003 Dec;4(12 ):981-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14631358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2005;39:197-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16285858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9939-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Nov;186(3):983-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Oct;24(19):4994-5005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26334549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2000 Aug;54(4):1092-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11005279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Aug 12;400(6745):667-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10458161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 29;339(6127):1578-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23413192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 May;19(5):838-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2004 Feb 29;359(1442):183-95; discussion 195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15101575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 Dec;22(12):662-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17011664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W622-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22684630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Jun 12;365(1547):1717-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Wang, Jing" sort="Wang, Jing" uniqKey="Wang J" first="Jing" last="Wang">Jing Wang</name>
</noRegion>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<name sortKey="Scofield, Douglas G" sort="Scofield, Douglas G" uniqKey="Scofield D" first="Douglas G" last="Scofield">Douglas G. Scofield</name>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001605 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001605 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26983554
   |texte=   Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26983554" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020